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ANALYSIS OF THE HESSIAN FOR INVERSE SCATTERING
PROBLEMS. PART III: INVERSE MEDIUM SCATTERING OF

ELECTROMAGNETIC WAVES IN THREE DIMENSIONS

TAN BUI-THANH ∗ AND OMAR GHATTAS †

Abstract. Continuing our previous work [6, Inverse Problems, 2012, 28, 055002] and [5, In-
verse Problems, 2012, 28, 055001], we address the ill-posedness of the inverse scattering problem of
electromagnetic waves due to an inhomogeneous medium by studying the Hessian of the data misfit.
We derive and analyze the Hessian in both Hölder and Sobolev spaces. Using an integral equation
approach based on Newton potential theory and compact embeddings in Hölder and Sobolev spaces,
we show that the Hessian can be decomposed into three components, all of which are shown to
be compact operators. The implication of the compactness of the Hessian is that for small data
noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in
turn enables fast solution of an appropriately regularized inverse problem, as well as Gaussian-based
quantification of uncertainty in the estimated inhomogeneity.

Key words. Inverse medium scattering; electromagnetic wave propagation, adjoint, Hessian,
Newton potential, compact operators, compact embeddings, Riesz-Fredholm theory, ill-posedness,
Gauss-Newton.

AMS subject classifications. 49N45, 49K20, 49K40, 49K30, 49J50, 49N60

1. Introduction. A feature of many ill-posed inverse problems is that the Hes-
sian operator of the data misfit functional is a compact operator with rapidly decaying
eigenvalues. This is a manifestation of the typically sparse observations, which are
informative about a limited number of modes of the infinite dimensional field we seek
to infer. The Hessian operator (and its finite dimensional discretization) play an im-
portant role in the analysis and solution of the inverse problem. In particular, the
spectrum of the Hessian at the solution of the inverse problem determines the degree of
ill-posedness and provides intuition on the construction of appropriate regularization
strategies. This has been observed, analyzed, and exploited in several applications
including shape optimization [12,13] and inverse wave propagation [4,11,14], to name
a few.

Moreover, solution of the inverse problem by the gold standard iterative method—
Newton’s method—requires “inversion” of the Hessian at each iteration. Compactness
of the Hessian of the data misfit functional accompanied by sufficiently fast eigenvalue
decay permits a low rank approximation, which in turn facilitates rapid inversion
or preconditioning of the regularized Hessian [8, 11]. Alternatively, solution of the
linear system arising at each Newton iteration by a conjugate gradient method can
be very fast if the data misfit Hessian is compact with rapidly decaying eigenvalues
and the conjugate gradient iteration is preconditioned by the regularization operator
[1]. Finally, under a Gaussian approximation to the Bayesian solution of the inverse
problem, the covariance of the posterior probability distribution is given by the inverse
of the Hessian of the negative log likelihood function. For Gaussian data noise and
model error, this Hessian is given by an appropriately weighted Hessian of the data
misfit operator, e.g., [20]. Here again, exploiting the low-rank character of the data

1Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin,
TX 78712, USA.

2Institute for Computational Engineering & Sciences, Jackson School of Geosciences, and De-
partment of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
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2 T. Bui-Thanh, O. Ghattas

misfit component of the Hessian is critical for rapidly approximating its inverse, and
hence the uncertainty in the inverse solution [4, 7, 14,17].

In all of the cases described above, compactness of the data misfit Hessian is a
critical feature that enables fast solution of the inverse problem, scalability of solvers to
high dimensions, and estimation of uncertainty in the solution. With this motivation,
here we analyze the Hessian operator for inverse medium electromagnetic scattering
problems, and study its compactness. This is a continuation of our previous efforts
in analyzing the ill-posedness, via the compactness of the Hessian, of inverse shape
acoustic scattering [5] and inverse medium acoustic scattering [6] problems. Our
analysis is based on an integral equation formulation of the time harmonic Maxwell
equations, adjoint methods, and compact embeddings in Hölder and Sobolev spaces.
These tools allow us to analyze the Hessian of the data misfit in detail. The ideas
of proof are similar to those in [6], but the details are more technical due to the
complexity of the Maxwell equations. Numerical results demonstrating the theoretical
results are not carried out in this paper since similar numerical validations can be
found in our previous work [5, 6].

The remainder of the paper is organized as follows. Section 2 briefly derives and
formulates forward and inverse electromagnetic scattering problems due to bounded
inhomogeneity. We then derive the Hessian for the inverse problem in Section 3.
Section 4 justifies the Hessian derivation by studying the well-posedness of the (in-
cremental) forward and (incremental) adjoint equations, and the regularity of their
solutions with respect to the smoothness of the inhomogeneity. Next, we analyze the
Hessian in Hölder spaces in Section 5, and then extend the analysis to Sobolev spaces
in Section 6. Finally, the conclusions of the paper are presented in Section 7.

2. Forward and inverse medium problems for electromagnetic scatter-
ing. In this section, we briefly discuss forward acoustic scattering problems due to
bounded inhomogeneity and the corresponding inverse problems. We begin by assum-
ing that the time harmonic incident wave

(
Eic,Hic

)
satisfies the Maxwell equation

∇×Eic − ikHic = 0, in R3,

∇×Hic + ikEic = 0, in R3,

where k > 0 is the wave number, i2 = −1 the imaginary unit. The total field
formulation for the scattering due to dielectric medium [10] can be equivalently cast
into the following scattered field formulation:

∇×E− ikH = 0, in R3, (2.1a)

∇×H + iknE = ik(1− n)Eic, in R3, (2.1b)

lim
r→∞

(H× x− rE) = 0, r = ‖x‖ , (2.1c)

where n ≡ n (x) > 0 is the distributed refractive index which is assumed to be 1 for
the free space (if not, we can always normalize (2.1a)–(2.1b) to fulfill this assumption),
and (E,H) the scattered field. The Silver–Müller radiation condition (2.1c) is assumed
to be valid uniformly in all directions x

‖x‖ with x ∈ R3 denoting the vector of spatial

coordinates. Note that it can also be written as limr→∞ r (H× n−E) = 0, where
n is the unit outward normal vector of the sphere with radius r. To the rest of the
paper, the medium is assumed to be bounded, that is, there exists a bounded domain
Ω such that n(x) = 1,∀ ‖x‖ ∈ R3 \Ω. In other words, q = 1−n has compact support
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in Ω. In fact, we shall assume n ∈ Cm,α(R3), and hence q ∈ Cm,α0 (Ω), throughout
the paper, where m ∈ N.

For the forward problem, n is given and we solve the forward equations (2.1a)–
(2.1c) for the scattered field (E,H). For the inverse problem, on the other hand, given
observation data

(
Eobs,Hobs

)
over some compact subset Ωobs ⊂ R3, we are asked to

infer the distribution of the refractive index n. One way to solve the inverse problem
is to cast it into the following PDE-constrained optimization problem:

min
q
J :=

∫
R3

K(x)
(∣∣E−Eobs

∣∣2 +
∣∣H−Hobs

∣∣2) dx, (2.2)

subject to the forward equations (2.1a)–(2.1c). Here, K(x) is the observation operator
whose support is Ωobs. Note that we could have different observation operators for E
and H but, for simplicity of the exposition, we assume they are the same and equal
to K(x). In order to cover several interesting observation operators, Ωobs is allowed
to be quite general in this paper. In particular, it could be a closed subset in R3 or a
relative closed subset of a manifold in R3. For example, Ωobs could be a closed arc,
or a closed curved, or a closed subset of a two dimensional manifold, or some two
dimensional manifold. For convenience, we identify

Kϕ :=

∫
R3

Kϕdx =

∫
Ωobs

ϕ (y) dy.

We also permit pointwise observations in our analysis, i.e. Ωobs ≡
{
xobsj

}Nobs
j=1

, and in

this case we identify

Kϕ :=

∫
R3

Kϕdx =

Nobs∑
j=1

ϕ
(
xobsj

)
. (2.3)

3. Derivation of the Hessian. In this section, we derive the gradient and
Hessian of the data misfit (2.2) using a reduced space approach1, and the justification
for our derivations is provided in Section 4. We begin with a useful observation on
the radiation condition. Since the radiation condition (2.1c) is valid uniformly in all
directions x

‖x‖ , we rewrite the radiation condition as

H× n−E = ϕ(r) = o
(
r−1
)
,

where r is the radius of a sufficiently large circle Γ∞, and ϕ(r) = o
(
r−1
)

means

lim
r→∞

rϕ(r) = 0.

It can be seen that the cost functional (2.2) is real-valued while the constraints
(2.1a)–(2.1c) are complex-valued. Consequently, the usual Lagrangian approach will
not make sense and care must be taken. Following Kreutz-Delgado [16], we define the

1See [19] for the difference between the full space and the reduced space approaches.
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Lagrangian as

L = J −
∫
R3

h · (∇×E− ikH) dx +

∫
R3

e ·
[
∇×H + iknE− ik(1− n)Eic

]
dx

+

∫
Γ∞

er · [H× n−E−ϕ(r)] ds

−
∫
R3

h ·
(
∇×E + ikH

)
dx +

∫
R3

e ·
[
∇×H− iknE + ik(1− n)Eic

]
dx

+

∫
Γ∞

er ·
[
H× n−E−ϕ(r)

]
ds

where the overline, when acting on forward and adjoint states (and their variations),
denotes the complex conjugate.

Taking the first variation of the Lagrangian with respect to e,h, er in the direc-
tions ê, ĥ, êr and arguing that the variations ê, ĥ, êr are arbitrary yield the forward
equations (2.1a)– (2.1c).

Now taking the first variation of the Lagrangian with respect to E,H in the
directions Ê, Ĥ, using the following vector calculus identities

∇ · (A×B) = B · (∇×A)−A · (∇×B) , (3.1a)

A · (B×C) = B · (C×A) = C · (A×B) , (3.1b)

and arguing that the variations Ê, Ĥ are arbitrary yield the following adjoint equa-
tions:

∇×e− ikh = −K
(
H−Hobs

)
, in R3, (3.2a)

∇×h + ikne = K
(
E−Eobs

)
, in R3, (3.2b)

lim
r→∞

(h× x + re) = 0, r = ‖x‖ , (3.2c)

and

er = −h× n on Γ∞.

It should be pointed out that the adjoint equations (3.2a)–(3.2c) is very similar to the
forward equations (2.1a)–(2.1c) except for the minus sign in the radiation condition.
This can be understood that the adjoint waves originate from infinity.

If we eliminate er, the Lagrangian now becomes

L = J −
∫
R3

h · (∇×E− ikH) dx +

∫
R3

e ·
[
∇×H + iknE− ik(1− n)Eic

]
dx

−
∫

Γ∞

(
h× n

)
· [H× n−E−ϕ(r)] ds

−
∫
R3

h ·
(
∇×E + ikH

)
dx +

∫
R3

e ·
[
∇×H− iknE + ik(1− n)Eic

]
dx

−
∫

Γ∞

(h× n) ·
[
H× n−E−ϕ(r)

]
ds

The gradient of the cost function acting in the direction q̂ is simply the variation of
the Lagrangian with respect to q in the direction q̂, i.e.,

DJ (q; q̂) = ik

∫
R3

[
e ·
(
E + E

ic
)
− e ·

(
E + Eic

)]
q̂ dx, (3.3)
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which is clearly a real number.
For the sake of convenience in deriving the Hessian, the forward and adjoint

equations are best expressed in the weak form. As a direct consequence of the above
variational calculus steps, the forward equation in the weak form reads

S (q,E,H) = −
∫
R3

ĥ · (∇×E− ikH) dx +

∫
R3

ê ·
[
∇×H + iknE− ik(1− n)Eic

]
dx

−
∫

Γ∞

(
ĥ× n

)
· [H× n−E−ϕ(r)] ds = 0, ∀

(
ê, ĥ

)
. (3.4)

Similarly, the adjoint equation in the weak form is given by

A (q,E,H, e,h) =

∫
R3

Ĥ ·
[
∇×e− ikh +K

(
H−Hobs

)]
dx

−
∫
R3

Ê ·
[
∇×h + ikne−K

(
E−Eobs

)]
dx

−
∫

Γ∞

(
Ĥ× n

)
· (h× n + e) ds = 0, ∀

(
Ê, Ĥ

)
. (3.5)

Next, the (reduced) Hessian acting in the directions q̂ and q̃ is obtained by simply
taking the first variation of the gradient DJ (q, q̂) with respect to q,E,H, e and h in
the directions q̃, Ẽ, H̃, ẽ and h̃, i.e.,

D2J (q; q̂, q̃) = ik

∫
R3

[
ẽ ·
(
E + Eic

)
− ẽ ·

(
E + Eic

)
+ e · Ẽ− e · Ẽ

]
q̂ dx (3.6)

As mentioned at the beginning of this section, the reduced space approach is employed,
and hence the variations Ẽ and ẽ can not be arbitrary. In fact, they are only admissible
if the forward and adjoint equations are satisfied. As a direct consequence, the first

variations of S (q,E,H) and A (q,E,H, e,h) must vanish, that is,
(
Ẽ, H̃

)
is the

solution of the following incremental forward equation:

−
∫
R3

ĥ ·
(
∇×Ẽ− ikH̃

)
dx +

∫
R3

ê ·
[
∇×H̃ + iknẼ− ikq̃

(
E + Eic

)]
dx

−
∫

Γ∞

(
ĥ× n

)
·
(
H̃× n− Ẽ

)
ds = 0, ∀

(
ê, ĥ

)
. (3.7)

and
(
ẽ, h̃
)

is the solution of the following incremental adjoint equation:∫
R3

Ĥ ·
(
∇×ẽ− ikh̃ +KH̃

)
dx−

∫
R3

Ê ·
(
∇×h̃ + iknẽ−KẼ− ikq̃e

)
dx

−
∫

Γ∞

(
Ĥ× n

)
·
(
h̃× n + ẽ

)
ds = 0, ∀

(
Ê, Ĥ

)
. (3.8)

Consequently, the corresponding strong form of the incremental forward equation is

∇×Ẽ− ikH̃ = 0, in R3, (3.9a)

∇×H̃ + iknẼ = ikq̃
(
E + Eic

)
, in R3, (3.9b)

lim
r→∞

(
H̃× x− rẼ

)
= 0, r = ‖x‖ , (3.9c)
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and that of the incremental adjoint equation reads

∇×ẽ− ikh̃ = −KH̃, in R3, (3.10a)

∇×h̃ + iknẽ = KẼ + ikq̃e, in R3, (3.10b)

lim
r→∞

(
h̃× x + rẽ

)
= 0, r = ‖x‖ . (3.10c)

It should be pointed out that the incremental forward pair
(
Ẽ, H̃

)
in (3.9a)–(3.9c) is

a function of q̃, i.e.,
(
Ẽ (q̃) , H̃ (q̃)

)
for a given variation q̃. Similar observation applies

to the incremental adjoint pair
(
ẽ (q̃) , h̃ (q̃)

)
in (3.10a)–(3.10c). To avoid possible

confusion, if Ẽ is evaluated at q̂, for example, we will write this dependency explicitly
as Ẽ (q̂); otherwise Ẽ means Ẽ (q̃) implicitly.

Next, we need to convert the Hessian in (3.6) into a symmetric form that is
convenient for our later analysis. The first step is to replace q̃ by q̂ and choose(
ê, ĥ

)
=
(
ẽ(q̃), h̃(q̃)

)
in the incremental forward equation (3.7). In the second step,

we take
(
Ê, Ĥ

)
=
(
Ẽ(q̂), H̃(q̂)

)
in the incremental adjoint equation (3.8). The

last step is to subtract the resulting incremental forward equation from the complex
conjugate of the resulting incremental adjoint equation. After some simple integration
by parts using (3.1a) and cancellations, we obtain

ik

∫
R3

[
ẽ (q̃) ·

(
E + Eic

)
− ẽ (q̃) ·

(
E + Eic

)]
q̂ dx = ik

∫
R3

[
e · Ẽ (q̂)− e · Ẽ (q̂)

]
q̃ dx

+

∫
R3

K
[
H̃ (q̂) · H̃ (q̃) + H̃ (q̂) · H̃ (q̃)

]
dx +

∫
R3

K
[
Ẽ (q̂) · Ẽ (q̃) + Ẽ (q̂) · Ẽ (q̃)

]
dx

which, after combining with (3.6), gives the desired symmetric form of the Hessian as

D2J (q; q̂, q̃) =

∫
R3

K
[
Ẽ (q̂) · Ẽ (q̃) + Ẽ (q̂) · Ẽ (q̃)

]
dx︸ ︷︷ ︸

H1(q;q̂,q̃)

+

∫
R3

K
[
H̃ (q̂) · H̃ (q̃) + H̃ (q̂) · H̃ (q̃)

]
dx︸ ︷︷ ︸

H2(q;q̂,q̃)

(3.11)

ik

∫
R3

[
e · Ẽ (q̃)− e · Ẽ (q̃)

]
q̂ dx + ik

∫
R3

[
e · Ẽ (q̂)− e · Ẽ (q̂)

]
q̃ dx︸ ︷︷ ︸

H3(q;q̂,q̃)

.

4. Regularity of the forward and adjoint solutions. In this section we
are going to justify what we have done in Section 3 by studying the regularity of
the (incremental) forward and (incremental) adjoint solutions with respect to the
medium q and its variations q̂, q̃. In particular, for sufficiently smooth inhomogeneity,
the solutions turn out to be classical by using an integral equation method, as we
shall show. As a by-product, we shall also show that the (incremental) forward and
(incremental) adjoint equations are well-posed.

Let us introduce the following standard volume potentials (also known as Newton
potentials) [10,15]:

w(x) = Tϕ(x) =

∫
R3

Φ(x,y)ϕ(y) dy, x ∈ R3, (4.1)
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where Φ is either the fundamental solution of the (incremental) forward equation(s)
defined as

Φ(x,y) =
eik‖x−y‖

4π ‖x− y‖
,

or the fundamental solution of the (incremental) adjoint solution(s):

Φ(x,y) =
e−ik‖x−y‖

4π ‖x− y‖
.

We recall the standard mapping properties of T defined in (4.1) here.

Lemma 4.1. Let ϕ ∈ C0

(
R3
)
∩ Cm,α(R3), where α ∈ (0, 1] and m ∈ N. Then

w ∈ Cm+2,α (Ω), and ‖w‖Cm+2,α(Ω) ≤ c ‖ϕ‖Cm,α(Ω), where supp (ϕ) ⊂ Ω ⊆ R3.
Moreover, the orders of differentiation and integration can be interchanged.

Proof. See [6, Lemma 1] for a proof.

The following representation formula is an easy variant of the Stratton and Chu
theorem [10, Theorem 6.1].

Lemma 4.2. Let E ,H ∈ C1
(
R3
)
, there holds

E (x) =− lim
r→∞

∇×
∫

Γ∞

n (y)× E (y) Φ (x,y) ds (y)

+ lim
r→∞

∇
∫

Γ∞

n (y) · E (y) Φ (x,y) ds (y)

− lim
r→∞

ik

∫
Γ∞

n (y)×H (y) Φ (x,y) ds (y)

+∇×
∫
R3

[∇×E (y)− ikH (y)] Φ(x,y) dy

−∇
∫
R3

∇ · E (y) Φ(x,y) dy

+ ik

∫
R3

[∇×H (y) + ikE (y)] Φ(x,y) dy, ∀x ∈ R3. (4.2)

Next, we show that the boundary terms in (4.2) vanish for a large class of problems.

Lemma 4.3. Let E ,H ∈ C1
(
R3
)

satisfy

∇×E − ikH = f , in R3 \ Ω, (4.3a)

∇×H + ikE = g, in R3 \ Ω, (4.3b)

lim
r→∞

(H × x± rE ) = 0, r = ‖x‖ , (4.3c)

2<
∫

Γ∞

H · f ds <∞, 2<
∫

Γ∞

E · g ds <∞, (4.3d)

where < is an operator that returns the real part of its argument. Then

lim
r→∞

∫
Γ∞

‖H × n‖2 ds = O (1) , and lim
r→∞

∫
Γ∞

‖E ‖2 ds = O (1) .
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Moreover,

− lim
r→∞

∇×
∫

Γ∞

n (y)× E (y) Φ (x,y) ds (y)

+ lim
r→∞

∇
∫

Γ∞

n (y) · E (y) Φ (x,y) ds (y)

− lim
r→∞

ik

∫
Γ∞

n (y)×H (y) Φ (x,y) ds (y) = 0, ∀x ∈ R3.

Proof. First, from the assumption on the radiation condition (4.3c) we have∫
Γ∞

‖H × n± E ‖2 ds = 0,

from which it follows that∫
Γ∞

(
‖H × n‖2 + ‖E ‖2

)
ds = ∓2<

∫
Γ∞

(n× E ) ·H ds.

Second, integrating both sides of (3.1a) on R3 \ Ω with A = E ,B = H and using
Gauss divergence theorem together with assumptions (4.3a)–(4.3b) give∫

Γ∞

(n× E ) ·H ds+

∫
∂Ω

(n× E ) ·H ds = ik

∫
R3\Ω

(
‖H ‖2 − ‖E ‖2

)
dx

−
∫
R3\Ω

E · g dx +

∫
R3\Ω

H · f dx.

It follows that

∓2<
∫

Γ∞

(n× E )·H ds = ±2<
∫
∂Ω

(n× E )·H ds±2<
∫
R3\Ω

E ·g dx∓2<
∫
R3\Ω

H ·f dx.

Consequently, we have the identity∫
Γ∞

(
‖H × n‖2 + ‖E ‖2

)
ds = ±2<

∫
∂Ω

(n× E ) ·H ds

± 2<
∫
R3\Ω

E · g dx∓ 2<
∫
R3\Ω

H · f dx,

whose right side is finite, and so is the left side. The first assertion is therefore
justified. The second assertion is the direct consequence of the first and the proof
of [10, Theorem 6.6].

Define, for any x ∈ Ω,

(Q[q̃]E ) (x) = ∇
∫

Ω

q̃(y)

1− q(y)
∇ · E (y)Φ(x,y) dy,

R (E ,H ) (x) = −∇×
∫

Ωobs
K (y) H Φ(x,y) dy +

i

k
∇∇ ·

∫
Ωobs

1

1− q(y)
K(y)E Φ(x,y) dy

+ ik

∫
Ωobs

K(y)E Φ(x,y) dy,

(T [q]E ) (x) = ∇
∫

Ω

1

1− q (y)
∇q (y) · E (y) Φ(x,y) dy + k2

∫
Ω

q(y)E (y)Φ(x,y) dy,(
T̂ [q̃]E

)
(x) = ∇

∫
Ω

1

1− q (y)
∇q̃ (y) · E (y) Φ(x,y) dy + k2

∫
Ω

q̃(y)E (y)Φ(x,y) dy,
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and I as the identity operator. Here is a direct consequence of Lemma 4.1.
Corollary 4.4. Suppose q, q̃ ∈ Cm,α0 (Ω), m ∈ N.

i) Q maps Cs+1,β (Ω) continuously into Cs+1,β (Ω) for s+ β ≤ m+ α.
ii) Cartesian components of R are analytic.

iii) T , T̂ map Cp−1,α (Ω) continuously into Cp,α (Ω) for 1 ≤ p ≤ m, and T , T̂ :
Cp−1,α (Ω)→ Cs,β (Ω) are compact operators for p− 1 + α ≤ s+ β < p+ α.

Proof. It is sufficient to prove the third assertion. A straightforward application
of Lemma 4.1 shows that T is a continuous operator from Cp−1,α (Ω) to Cp,α (Ω).
Moreover, the compactness is trivial due to compact embeddings in Hölder spaces [21].

We are in the position to discuss representation formulas for (incremental) forward
and (incremental) adjoint equations.

Proposition 4.5. Solutions of the (incremental) forward and (incremental)
adjoint equations satisfy:

(I + T [q])E = −T [q]Eic, (4.4)

(I + T [q]) Ẽ = −T̂ [q̃]
(
E + Eic

)
−Q[q̃]E, (4.5)

(I + T [q]) e = R
(
E−Eobs,H−Hobs

)
, (4.6)

(I + T [q]) ẽ = R
(
Ẽ, H̃

)
− T̂ [q̃]e−Q[q̃]e. (4.7)

Conversely, suppose that E, Ẽ, e, ẽ are solutions of the integral equations (4.4)–(4.7),
and define, ∀x ∈ R3,

E(x) := −T [q]E− T [q]Eic,

Ẽ(x) := −T [q] Ẽ− T̂ [q̃]
(
E + Eic

)
−QE,

e(x) := −T [q] e +R
(
E−Eobs,H−Hobs

)
,

ẽ(x) := −T [q] ẽ +R
(
Ẽ, H̃

)
− T̂ [q̃]e−Qe,

H := ∇×E/(ik),h := ∇×e/(ik) + K
(
H−Hobs

)
/(ik), H̃ := ∇×Ẽ/(ik), and h̃ :=

∇×ẽ/(ik) + KH̃/(ik). Then (E,H) ,
(
Ẽ, H̃

)
, (e,h) ,

(
ẽ, h̃

)
are solutions of the (in-

cremental) forward and (incremental) adjoint equations.
Proof. We first observe that the (incremental) forward and (incremental) adjoint

equations satisfy Lemma 4.3 since q, q̃ and K have compact support. Lemma 4.2 then
shows that all these equations have the following common representation formula

E (x) = ∇×
∫
R3

[∇×E (y)− ikH (y)] Φ(x,y) dy

−∇
∫
R3

∇ · E (y) Φ(x,y) dy

+ ik

∫
R3

[∇×H (y) + ikE (y)] Φ(x,y) dy, ∀x ∈ R3. (4.8)

We provide the proof for only (4.7) since the others are simpler. From (3.10b) we find
that

∇ · ẽ = − 1

n
∇n · ẽ− i

kn
∇ ·
(
KẼ

)
+

1

n
∇ · (q̃e) ,
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which, together with (3.10a)–(3.10b), can be substituted to (4.8) to end the proof of
(4.7) by using the fact

− i
k

∫
R3

1

n
∇ ·
(
KẼ

)
Φ(x,y) dy =

i

k
∇ ·
∫

Ωobs

K(y)

n(y)
Ẽ(y)Φ(x,y) dy,

owing to ∇xΦ(x,y) = −∇yΦ(x,y), supp q ∩ suppK = ∅, and integration by parts.
The converse is long and tedious, and hence omitted, though one can similarly follow
[10, Theorem 9.2].

Proposition 4.5 shows that we can equivalently study the existence, uniqueness,
and stability of (incremental) forward and (incremental) adjoint solutions via the
integral equations (4.4)–(4.7).

Theorem 4.6. Let q, q̃ ∈ Cm,α0 (Ω), m ∈ N, there hold:
i) there exists a unique solution to the forward integral equation (4.4) such that

E ∈ Cm,α (Ω), H ∈ Cm+1,α (Ω), and ‖E‖Cm,α(Ω) ≤ c ‖q‖Cm,α(Ω)

∥∥Eic∥∥
Cm,α(Ω)

,

‖H‖Cm+1,α(Ω) ≤ c ‖q‖Cm,α(Ω)

∥∥E + Eic
∥∥
Cm,α(Ω)

.

ii) there exists a unique solution to the incremental forward integral equation

(4.5) such that Ẽ ∈ Cm,α (Ω), H̃ ∈ Cm+1,α (Ω), and
∥∥∥H̃∥∥∥

Cm+1,α(Ω)
≤ c

∥∥∥Ẽ∥∥∥
Cm,α(Ω)

where
∥∥∥Ẽ∥∥∥

Cm,α(Ω)
≤ c ‖q̃‖Cm,α(Ω)

(
‖E‖Cm,α(Ω) +

∥∥Eic∥∥
Cm,α(Ω)

)
.

iii) there exists a unique solution to the adjoint integral equation (4.6) such that
e ∈ Cm,α (Ω) and ‖e‖Cm,α(Ω) ≤ c

(∥∥E−Eobs
∥∥
∞ +

∥∥H−Hobs
∥∥
∞

)
.

ii) there exists a unique solution to the incremental adjoint integral equation (4.7)

such that ẽ ∈ Cm,α (Ω) and ‖ẽ‖Cm,α(Ω) ≤ c
(∥∥∥Ẽ∥∥∥

∞
+
∥∥∥H̃∥∥∥

∞
+ ‖e‖Cm,α(Ω)

)
.

Proof. We begin with the first assertion. Since Eic is analytic Corollary 4.4
shows that the right side of (4.4) belongs to Cm,α (Ω), and that T is compact in
Cm−1,β (Ω). By the Riesz-Fredholm theory [9], we only need to prove the uniqueness
of (4.4). That is, we need to prove that (I + T [q])E = 0 in Cm−1,α (Ω) implies
E = 0 in Cm−1,α (Ω). Now, Proposition 4.5 indicates that E and H = ∇×E/(ik) is
the solution of (2.1a)–(2.1c) with Eic = 0. Following Step 2 of the proof of Lemma
4.3 in Ω with E = E,H = H, f = g = 0, we find that

2<
∫
∂Ω

(n× E ) ·H ds = 0,

which, by Steps 1 and 2 of the proof of Lemma 4.3, implies that

lim
r→∞

∫
Γ∞

‖E‖2 ds = 0.

Now, since (E,H) satisfies the Maxwell equation in R3 \ Ω, each component of E
satisfies the Helmholtz equation in R3 \Ω, and we conclude that E = H = 0 in R3 \Ω
by Rellich lemma [10]. A result in [10, Theorem 9.3] then shows that E = H = 0 in R3.
Invoking the Riesz-Fredholm theory yields that there exists a unique E ∈ Cm−1,α (Ω)
and

‖E‖Cm−1,α(Ω) ≤ c
∥∥T [q]Eic

∥∥
Cm−1,α(Ω)

≤ c ‖q‖Cm,α(Ω)

∥∥Eic∥∥
Cm−1,α(Ω)

,

where we have used [5, Lemma 5] in the last inequality. Unless otherwise stated,
the constant c at different places may have different value. Using Lemma 4.1 shows
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that in fact E ∈ Cm,α (Ω) and ‖E‖Cm,α(Ω) ≤ c ‖E‖Cm−1,α(Ω). Next, using Lemma

4.1 and the fact ∇×∇ (·) = 0, we see that H ∈ Cm+1,α (Ω) and ‖H‖Cm+1,α(Ω) ≤
c ‖q‖Cm,α(Ω)

∥∥E + Eic
∥∥
Cm,α(Ω)

.

Similarly, for the incremental forward equation, we observe that the right side
of (4.5) lives in Cm,α (Ω) by an application of Lemma 4.1. An application of the
Riesz-Fredholm theory shows that Ẽ ∈ Cm−1,α with∥∥∥Ẽ∥∥∥

Cm−1,α(Ω)
≤ c ‖q̃‖Cm,α(Ω)

(
‖E‖Cm,α(Ω) +

∥∥Eic∥∥
Cm,α(Ω)

)
,

and the property of the Newton potential in Lemma 4.1 improves the result to Ẽ ∈
Cm,α (Ω).

The proofs for the adjoint and incremental adjoint equations follow similarly by
observing that R (·, ·) is analytic due to the fact Ωobs ∩ Ω = ∅.

Remark 4.7. Let us define min {(m,α) , (s+ 1, β)} to be equal to (m,α) if m+
α ≤ s+1+β and to (s+ 1, β) otherwise. Then, a more general result can be obtained:
for the forward equation, for example, if 1 ≤ p ≤ m, for p − 1 + α ≤ s + β < p + α
there exists a unique solution to (4.4) such that E ∈ Cmin{(m,α),(s+1,β)} (Ω), H ∈
Cmin{(m+1,α),(s+2,β)} (Ω). Moreover, ‖E‖Cmin{(m,α),(s+1,β)}(Ω) ≤ c

∥∥Eic∥∥
Cm−1,α(Ω)

, and

‖H‖Cmin{(m+1,α),(s+2,β)} ≤ c
∥∥Eic∥∥

Cm−1,α(Ω)
. However, for clarity of the exposition, we

consider only the case p = s = m,β = α.
We are now in the position to justify our derivations of gradient and Hessian in

Section 3.
Theorem 4.8. Let Ω ⊂ R3 be a bounded domain. Assume that q, q̂ and q̃

belong to C1,α
0 (Ω). Then, the cost functional (2.2) is twice continuously Fréchet

differentiable; and hence the gradient (3.3) and Hessian (3.11) are well-defined.
Proof. First, observe that we have used Gâteaux derivatives to derive the gradient

and Hessian in Section 3. Now it is evident that both DJ (q; q̂) and D2J (q; q̂, q̃) are
linear and continuous with respect to q̂ (and q̃) by Theorem 4.6. Moreover, continuous
dependence on q of E,H from Theorem 4.6 implies the continuous dependence on q of
e, Ẽ, and H̃, which in turn implies the continuity of DJ (q; q̂) and D2J (q; q̂, q̃) with
respect to q. Hence, a classical result on sufficiency for Fréchet derivative [3] ends the
proof.

5. Analysis of the Hessian in Hölder spaces. In this section we study the
behavior of the Hessian at a fixed refractive distribution n, i.e., q = 1−n ∈ Cm,α0 (Ω).
Similar to our previous work [6] on medium inverse acoustic scattering, the Hessian
of the inverse medium scattering problem for electromagnetic waves turns out to be
compact for all q as we shall show. For concreteness, we restricted ourselves to two
exemplary cases of the observation operator, namely, the observation is everywhere on
a compact subset Ωobs having non-trivial r-dimensional Lebesgue measure for some
1 ≤ r ≤ 3 (we call this case as continuous observation) and pointwise observation

Ωobs =
{
xobsj

}Nobs
j=1

.

From Theorem 4.6, observe that the incremental forward solution Ẽ can be iden-
tified as the following operator composition:

Cm,α0 (Ω) 3 ñ 7→ Ẽ(q̃) = − (I + T [q])
−1 T̂ [q̃]

(
E + Eic

)
−(I + T [q])

−1QE ∈ Cm−1,α(Ω).
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Lemma 5.1. Ẽ (q̃) : Cm,α0 (Ω)→ Cm−1,α(Ω) is a compact operator.

Proof. First, owing to the Riesz-Fredholm theory, (I + T [q])
−1

is a bounded
map from Cm−1,α(Ω) to Cm−1,α(Ω). Second, due to E ∈ Cm,α (Ω) ⊂ Cm−1,α(Ω),
Corollary 4.4 shows that both T̂ and Q, as a function of q̃, map Cm,α0 (Ω) continuously
into Cm,α (Ω), and hence compactly embedded into Cm−1,α(Ω) [21]. Finally, since
Ẽ is a sum of two operators, each of which is a composition of a continuous and a
compact operators, it is compact.

As a direct consequence, Ẽ(·)
∣∣∣
Ωobs

: Cm,α0 (Ω)→ Cm−1,α
(
Ωobs

)
is still a compact

operator since restricting to Ωobs is a continuous operation.
If the observation is continuous, the first Gauss-Newton part of the Hessian,

namely H1(q; q̂, q̃), can be now rewritten as

H1(q; q̂, q̃) = 2<
(
Ẽ(n̂), Ẽ(ñ)

)
L2(Ωobs)

= 2<
〈
Ẽ
∣∣∣∗
Ωobs

Ẽ(n̂)
∣∣∣
Ωobs

, ñ
〉

(Cm,α0 (Ω))
′×Cm,α0 (Ω)

,

where (·)∗ denotes the adjoint operator. Note that the composition Ẽ
∣∣∣∗
Ωobs

Ẽ
∣∣∣
Ωobs

is

meaningful since Cm−1,α
(
Ωobs

)
⊂
(
Cm−1,α

(
Ωobs

))′
; in fact it is continuous. In this

form, the first part of the Gauss-Newton Hessian

H1(q) (·, ·) := H1(q; ·, ·) = 2<
〈
Ẽ
∣∣∣∗
Ωobs

Ẽ(·)
∣∣∣
Ωobs

, ·
〉

(Cm,α0 (Ω))
′×Cm,α0 (Ω)

is evidently compact due to the compactness of Ẽ (·)
∣∣∣
Ωobs

. To study the second part

of the Gauss-Newton Hessian, we first write H̃ (q̃) as

H̃ (q̃) =
1

ik
∇×Ẽ (q̃) = ik∇×

∫
Ω

q(y)Ẽ(q̃)Φ(x,y) dy+ik∇×
∫

Ω

q̃(y)
(
E + Eic

)
Φ(x,y) dy,

where we have used the fact that ∇×∇ (·) = 0. Since Ẽ (q̃) maps Cm,α0 (Ω) con-
tinuously into Cm,α (Ω), we conclude that H̃ (q̃), as a operator, is continuous from
Cm,α0 (Ω) to Cm+1,α (Ω) owing to E ∈ Cm,α (Ω), q, q̃ ∈ Cm,α0 (Ω), and Lemma 4.1. By
the standard Hölder compact embeddings [21], H̃ (q̃) is a compact operator from from
Cm,α0 (Ω) to from Cm,α (Ω). Argue similarly as above, we deduce that the second part
of the Gauss-Newton Hessian

H2(q) (·, ·) := H2(q; ·, ·) = 2<
〈
H̃
∣∣∣∗
Ωobs

H̃(·)
∣∣∣
Ωobs

, ·
〉

(Cm,α0 (Ω))
′×Cm,α0 (Ω)

is a compact operator.
Let us now study the Gauss-Newton Hessian with pointwise observations. On the

one hand, we rewrite the right side of (4.5) as

−∇x

∫
Ω

∇y ·
(
q̃
(
E + Eic

)) Φ(x,y)

n(y)
dy − k2

∫
Ω

q̃
(
E + Eic

)
Φ(x,y) dy

=

∫
Ω

[(
E + Eic

)
· ∇y

(
Φ′x(x,y)

n(y)

)
− k2

(
E + Eic

)
Φ(x,y)

]
︸ ︷︷ ︸

f1(x,y)

q̃(y) dy,

where integrating the first term by parts, using compact support of q̃, and interchang-
ing the order of integration and differentiation have been used. Here, Φ′x = ∇xΦ and
∇y is understood to act component-wise.
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On the other hand, using the adjoint Ẽ∗ allows us to write

T [q]Ẽ (x) = −

〈
Ẽ∗
(

Φ′x(x,y)

1− q (y)
⊗∇q (y)

)
︸ ︷︷ ︸

f2(x,y)

, q̃(y)

〉
−

〈
Ẽ∗
(
k2q(y)Φ(x,y)

)︸ ︷︷ ︸
f3(x,y)

, q̃(y)

〉
,

with 〈·, ·〉 denoting the duality pairing between (Cm,α0 (Ω))
′

and Cm,α0 (Ω). Conse-
quently, from incremental forward integral equation (4.5), the evaluation of Ẽ (q̃) at
xobsj can be written as

Ẽ (q̃)
(
xobsj

)
=

〈[
f1(xobsj ,y)− f2(xobsj ,y)− f3(xobsj ,y)

]︸ ︷︷ ︸
Ψj(y)

, q̃(y)

〉
.

It follows that the first part of the Gauss-Newton Hessian can be written as

H1(q) (q̂, q̃) = 2<
Nobs∑
j=1

Ẽ (q̃)
(
xobsj

)
Ẽ (q̂)

(
xobsj

)
= 2<

〈〈
Nobs∑
j

ΨjΨj , q̃

〉
, q̂

〉
,

which shows that the dimension of the range of H1(q) is at most Nobs. As a result,
H1(q) is a compact operator. By the same token, one can show that the second part of
the Gauss-Newton Hessian H1(q) (q̂, q̃) is compact due to its finite dimensional range.

We summarize the above result on the compactness of the Gauss-Newton Hessian
in the following theorem which is valid for both continuous and pointwise observation
cases.

Theorem 5.2. The Gauss-Newton Hessian, H1(q) plus H2(q), as a continuous
bilinear form on Cm,α0 (Ω)× Cm,α0 (Ω), is compact.

The analysis of H3(q) is somewhat easier as we shall now show.
Theorem 5.3. H3(q), as a continuous bilinear form on Cm,α0 (Ω)×Cm,α0 (Ω), is

a compact operator.
Proof. Rewrite H3(q; q̂, q̃) as

H3(q; q̂, q̃) = 2k<
∫

Ω

[
ie · Ẽ (q̃)q̂ + ie · Ẽ (q̂)q̃

]
dΩ = 2k<

〈
ie · Ẽ (q̃) + Ẽ∗

(
ieq̃
)
, q̂
〉

We conclude that H3 (q) is compact by the following three observations. First, the
incremental forward solution Ẽ can be identified as a compact operator as discussed
above. Second, multiplication by ie is a continuous operation in Cm,α (Ω) (see [5] for
example). Third, the sum of two compact operators is again compact.

We close this section by observing that the full Hessian is the sum of three compact
operators, it is therefore compact as well.

6. Analysis of the Hessian in Sobolev spaces. Similar to our previous work
[5, 6], we shall extend the analysis in Hölder spaces to Sobolev spaces. We recall a
result [6] on the mapping property of T in Sobolev spaces that is result similar to that
of Lemma 4.1.

Lemma 6.1. Assume that ϕ is bounded and integrable, Ω ⊂ R3 is a bounded
domain. Then T defined in (4.1) maps Hm (Ω) continuously to Hm+2 (Ω) for m ∈
N ∪ {0}.

We next summarize main results parallel to those in Sections 4 and 5. Since the
proofs are similar, we omit the details.

Corollary 6.2. Suppose q, q̃ ∈ Hm (Ω), m ∈ N.
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i) Q maps Hm (Ω) continuously into Hm (Ω).
ii) T , T̂ map Hm−1 (Ω) continuously into Hm (Ω), and T , T̂ : Hm−1 (Ω) →

Hp (Ω) are compact operators for m− 1 ≤ p < m.
Note that the last result in Corollary 6.2 is due to compact embeddings in Sobolev

spaces [2, 18]. From now on to the end of this section, we need m ≥ 2 for point
observations to make sense since only Sobolev spaces of order greater than 3/2 are
embedded into the space of continuous functions [18].

Theorem 6.3. Let q, q̃ ∈ Hm (Ω), m ∈ N and m ≥ 2, there hold:
i) there exists a unique solution to the forward integral equation (4.4) such that

E ∈ Hm (Ω), H ∈ Hm+1 (Ω), and ‖E‖Hm(Ω) ≤ c ‖q‖Hm(Ω)

∥∥Eic∥∥
Hm(Ω)

,

‖H‖Hm+1(Ω) ≤ c ‖q‖Hm(Ω)

∥∥E + Eic
∥∥
Hm(Ω)

.

ii) there exists a unique solution to the incremental forward integral equation

(4.5) such that Ẽ ∈ Hm (Ω), H̃ ∈ Hm+1 (Ω), and
∥∥∥H̃∥∥∥

Hm+1(Ω)
≤ c

∥∥∥Ẽ∥∥∥
Hm(Ω)

where
∥∥∥Ẽ∥∥∥

Hm(Ω)
≤ c ‖q̃‖Hm(Ω)

(
‖E‖Hm(Ω) +

∥∥Eic∥∥
Hm(Ω)

)
.

iii) there exists a unique solution to the adjoint integral equation (4.6) such that
e ∈ Hm (Ω) and ‖e‖Hm(Ω) ≤ c

(∥∥E−Eobs
∥∥
∞ +

∥∥H−Hobs
∥∥
∞

)
.

ii) there exists a unique solution to the incremental adjoint integral equation (4.7)

such that ẽ ∈ Hm (Ω) and ‖ẽ‖Hm(Ω) ≤ c
(∥∥∥Ẽ∥∥∥

∞
+
∥∥∥H̃∥∥∥

∞
+ ‖e‖Hm(Ω)

)
.

Clearly, the Sobolev setting also shows that the gradient and the Hessian are
meaningful.

Theorem 6.4. Let Ω ⊂ R3 be a bounded domain. Assume that q, q̂ and q̃
belong to Hm (Ω) with m ∈ N and m ≥ 2. Then, the cost functional (2.2) is twice
continuously Fréchet differentiable; and hence the gradient (3.3) and Hessian (3.11)
are well-defined.

Lemma 6.5. Let q, q̃ ∈ Hm (Ω), m ∈ N and m ≥ 2. Then Ẽ (q̃) : Hm (Ω) →
Hm−1 (Ω) is a compact operator.

Here comes the main result of this section.
Theorem 6.6. Let Ω ⊂ R3 be a bounded domain. Suppose q ∈ Hm (Ω), m ∈ N

and m ≥ 2. Then, the Hessian, H (q) = H1 (q)+H2 (q)+H3 (q), is a compact operator
in Hm (Ω).

7. Conclusions. We have analyzed the Hessian stemming from the inverse prob-
lem of scattering of electromagnetic waves due to bounded inhomogeneity. Similar to
our companion paper on inverse medium scattering problems of acoustic waves [6], we
have shown that the full Hessian is a compact operator. Our analysis starts with a
study on the regularity of the scattering solution with respect to the smoothness of the
medium based on the Newton potential theory and the Riesz-Fredholm framework.
Then, together with compact embeddings in Hölder and Sobolev spaces, we are able to
prove the compactness of the Hessian operator in both Hölder space and Sobolev space
settings for three dimensional inverse medium electromagnetic scattering problems.
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